Total 2	No.	of	Questions	:	8]
---------	-----	----	-----------	---	----

P1476

SEAT No. :

[Total No. of Pages: 3

[6002]- 103 S.E. (Civil)

FLUID MECHANICS

(2019 Pattern) (Semester - III) (201003)

Time :2½ *Hours*]

[*Max. Marks* : 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2 Q.3 or Q.4 Q.5 or Q.6 Q.7 or Q.8.
- 2) Answers to the all questions should be written in single answer-book.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Assume suitable data, if necessary.
- Q1) a) The resistance force R experienced by a partially submerged body depends upon the velocity V, length of the body I, viscosity of the fluid μ , density of the fluid ρ , and gravitational acceleration g. Using Buckingham-Pi method, prove that:

$$R = \rho V^2 L^2 \phi \left(\frac{\rho V L}{\mu}, \frac{V}{\sqrt{g l}} \right)$$

- b) Explain following similarities as applicable to model studies:
 - i) Geometric similarity
 - ii) kinematic similarity
 - iii) dynamic similarity
- c) The velocity distribution in a boundary layer is given by

$$\frac{u}{U} = \frac{y}{\delta}$$

Calculate displacement thickness.

OR

Q2) a) The velocity and discharge for a $\frac{1}{50}$ scale model of a spillway are 0.35 m/sec and 0.11 m³/sec, respectively. Calculate corresponding velocity and discharge in the prototype. [6]

P.T.O.

[6]

	b)	Explain the growth of boundary layer over a thin flat plate held parallel to the direction of flow in a real fluid. [6]
	c)	Explain following similarity laws [6]
		i) Reynold's model law
		ii) Froude's model law
Q 3)	a)	Explain all types of minor losses in pipe. [7]
	b)	The water surface levels of two reservoirs differ by 12 m. They are connected by a 55 m long pipe. For the first 25 m length the diameter is 120 mm and for the remaining length diameter is 150 mm. The Darcy-Weisbach friction factor f for 120 mm diameter and 150 mm diameter pipes are respectively 0.024 and 0.02. Determine the discharge. Neglect minor losses.
	c)	Draw typical velocity distribution diagrams for fully developed laminar and turbulent flow through pipe. Also state the nature of velocity profile for each. [3]
Q4)	a)	Define following term applicable to turbulent flow through pipe: [6]
		i) instantaneous velocity
		ii) temporal mean velocity
		iii) Prandtl's mixing length
	b)	Prove that for steady uniform laminar flow through circular pipe, the velocity distribution diagram is parabolic. [9]
	c)	Calculate the value of Darcy Weisbach friction factor if Reynold's Number for flow through pipe is 100. [2]
Q 5)	a)	Explain specific energy curve. [5]
	b)	A trapezoidal channel has side slope of 1 V: 1.5 H and the slope of the channel bottom is 1:5000. Determine the dimensions of most efficient channel section, if it has to carry water at 10 m³/sec. Take Manning's n=0.012.
	c)	Explain different four types of flows in open channel. [4]
		OR OR

[6002]-103

Q6)	a)	Calculate minimum specific energy and maximum discharge corresponding to specific energy of 1.8 m that may occur in a rectangular channel 5 m wide. [8]
	b)	Define following terms applicable for uniform flow computation: [3]
		i) normal depth
		ii) conveyance
		iii) section factor
	c)	Explain velocity distribution in open channel flow. [6]
	Í	
Q 7)	a)	Explain M1, M2, and M3 profiles of GVF. Give their practical example. [9]
~ /	b)	A flat plate 1 m ×1 m moves through air of density 1.2 kg/m ³ at 30 kmph.
	-,	Determine: [9]
		i) drag force
	1	ii) lift force
		iii) resultant force
		iv) power required to maintain the plate in motion.
		Take $C_D = 0.18, C_L = 0.70$.
0.01		OR
Q 8)	a)	In a wide rectangular channel of 100 m wide and 3 m deep has an average bed slope of 0.0005. Estimate the length of the GVF profile produced
		by a low weir which raises the water surface just upstream of it by 1.5 m.
		Take Manning's n= 0.035. Use direct step method and take two steps only. Sketch the water surface profile. [10]
	b)	Differentiate between bluff body and streamlined body with neat sketch.
		[5]
	c)	Draw a neat sketch showing variation of drag coefficient with Reynolds Number for flow around circular cylinder. [3]
		Number for flow around circular cylinder. [3]
		જ્જી જ્જી
[600)21-1	03 3 S